# This script uses multi processing and raspividyuv to capture frames @35 fps with canny edge detection # To-Do: # -set parameter for camera # -typos and uniformity # -comment things better and make more steps for easier understanding for non-python-people (or maybe proficiency level beginner) # -capture led strips and save video # -How about OV-Sensor? because putting camera in sensor mode 4 and requesting image with less resolution drops fps. # -Ist blitzen auch bei diesem skript da??!?!?!??!? import cv2 as cv import numpy as np import subprocess as sp import time import atexit frames = [] # stores the video sequence for the demo max_frames =500 N_frames = 0 # Video capture parameters (w,h) = (416,320) # height must be multiple of 32 and width multiple of 16 colour_channels = 3 bytesPerFrame = w * h * colour_channels fps = 35 # setting to 250 will request the maximum framerate possible sensor_mode = 4 # "raspividyuv" is the command that provides camera frames in YUV format # "--output -" specifies stdout as the output # "--timeout 0" specifies continuous video # "--luma" discards chroma channels, only luminance is sent through the pipeline # see "raspividyuv --help" for more information on the parameters # videoCmd = "raspividyuv -w "+str(w)+" -h "+str(h)+" --output - --timeout 0 --framerate "+str(fps)+" --rgb --nopreview --mode "+str(sensor_mode) videoCmd = f"raspividyuv -w {w} -h {h} --output - --timeout 0 --framerate {fps} --rgb --nopreview --mode {sensor_mode}" # with sensor mode 38 fps instead of 72 fps --> How about Camera OV-Sensor? # videoCmd = "raspividyuv -w "+str(w)+" -h "+str(h)+" --output - --timeout 0 --framerate "+str(fps)+" --rgb --nopreview" videoCmd = videoCmd.split() # Popen requires that each parameter is a separate string cameraProcess = sp.Popen(videoCmd, stdout=sp.PIPE) # start the camera atexit.register(cameraProcess.terminate) # this closes the camera process in case the python scripts exits unexpectedly # wait for the first frame and discard it (only done to measure time more accurately) rawStream = cameraProcess.stdout.read(bytesPerFrame) print("Start...") start_time = time.time() while True: cameraProcess.stdout.flush() # discard any frames that we were not able to process in time frame = np.frombuffer(cameraProcess.stdout.read(bytesPerFrame), dtype=np.uint8) # raw NumPy array without JPEG encoding if frame.size != bytesPerFrame: print("Error: Camera stream closed unexpectedly") break frame.shape = (h,w,colour_channels) # set dimensions for numpy array --> from (921600,) to (480,640,3) # do the processing here with OpenCV frame = cv.cvtColor(frame,cv.COLOR_BGR2RGB) # convert frame to rgb # test frame_gs=cv.cvtColor(frame,cv.COLOR_RGB2GRAY) frame = cv.Canny(frame_gs, 50,150) frames.append(frame) # save the frame (for the demo) N_frames += 1 #test #put text font = cv.FONT_HERSHEY_SIMPLEX # font fontScale = 1 # fontScale color = (255, 255, 255) # Font colour in BGR thickness = 1 # Line thickness in px # set text position frame_width = int(frame.shape[1]) frame_height = int(frame.shape[0]) text_start_position_Y = int(round(frame_height*0.12)) # start position of text in pixels 12 % of frame height text_linespacing = 50 # line spacing between two strings in pixels # text_start_position_X = int(frame_width/4) # start text from 1/4 of image width text_start_position_X = int(0) # start text from left edge of image pos_1 = (text_start_position_X, text_start_position_Y) text_line_1 = f"Frame: {N_frames}" cv.putText(frame, text_line_1, pos_1, font, fontScale, color, thickness, cv.LINE_AA) # if N_frames > max_frames: break #if i deactivate cv.imshow i can control end of program with this parameter. cv.imshow("Current Frame", frame) # display the image pressed_key = cv.waitKey(1) & 0xff if pressed_key == ord('q'): break cv.destroyAllWindows() end_time = time.time() cameraProcess.terminate() # stop the camera elapsed_seconds = end_time-start_time print(f"Finish! Result: {(N_frames/elapsed_seconds)} fps")