117 lines
4.1 KiB
Python
117 lines
4.1 KiB
Python
|
#modified by Kenan Gömek
|
||
|
# Source: https://pyimagesearch.com/2016/03/28/measuring-size-of-objects-in-an-image-with-opencv/
|
||
|
|
||
|
# import the necessary packages
|
||
|
from scipy.spatial import distance as dist
|
||
|
from imutils import perspective
|
||
|
from imutils import contours
|
||
|
import numpy as np
|
||
|
import argparse
|
||
|
import imutils
|
||
|
import cv2
|
||
|
|
||
|
def midpoint(ptA, ptB):
|
||
|
return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
|
||
|
|
||
|
# construct the argument parse and parse the arguments
|
||
|
ap = argparse.ArgumentParser()
|
||
|
ap.add_argument("-i", "--image", required=True,
|
||
|
help="path to the input image")
|
||
|
ap.add_argument("-w", "--width", type=float, required=True,
|
||
|
help="width of the left-most object in the image (in inches)")
|
||
|
args = vars(ap.parse_args())
|
||
|
|
||
|
# load the image, convert it to grayscale, and blur it slightly
|
||
|
image = cv2.imread(args["image"])
|
||
|
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||
|
gray = cv2.GaussianBlur(gray, (7, 7), 0)
|
||
|
|
||
|
# perform edge detection, then perform a dilation + erosion to
|
||
|
# close gaps in between object edges
|
||
|
edged = cv2.Canny(gray, 50, 100)
|
||
|
edged = cv2.dilate(edged, None, iterations=1)
|
||
|
edged = cv2.erode(edged, None, iterations=1)
|
||
|
|
||
|
# find contours in the edge map
|
||
|
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
|
||
|
cv2.CHAIN_APPROX_SIMPLE)
|
||
|
cnts = imutils.grab_contours(cnts)
|
||
|
|
||
|
# sort the contours from left-to-right and initialize the
|
||
|
# 'pixels per metric' calibration variable
|
||
|
(cnts, _) = contours.sort_contours(cnts)
|
||
|
pixelsPerMetric = None
|
||
|
|
||
|
# loop over the contours individually
|
||
|
for c in cnts:
|
||
|
# if the contour is not sufficiently large, ignore it
|
||
|
if cv2.contourArea(c) < 100:
|
||
|
continue
|
||
|
|
||
|
# compute the rotated bounding box of the contour
|
||
|
orig = image.copy()
|
||
|
box = cv2.minAreaRect(c)
|
||
|
box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
|
||
|
box = np.array(box, dtype="int")
|
||
|
|
||
|
# order the points in the contour such that they appear
|
||
|
# in top-left, top-right, bottom-right, and bottom-left
|
||
|
# order, then draw the outline of the rotated bounding
|
||
|
# box
|
||
|
box = perspective.order_points(box)
|
||
|
cv2.drawContours(orig, [box.astype("int")], -1, (0, 255, 0), 2)
|
||
|
|
||
|
# loop over the original points and draw them
|
||
|
for (x, y) in box:
|
||
|
cv2.circle(orig, (int(x), int(y)), 5, (0, 0, 255), -1)
|
||
|
|
||
|
# unpack the ordered bounding box, then compute the midpoint
|
||
|
# between the top-left and top-right coordinates, followed by
|
||
|
# the midpoint between bottom-left and bottom-right coordinates
|
||
|
(tl, tr, br, bl) = box
|
||
|
(tltrX, tltrY) = midpoint(tl, tr)
|
||
|
(blbrX, blbrY) = midpoint(bl, br)
|
||
|
|
||
|
# compute the midpoint between the top-left and top-right points,
|
||
|
# followed by the midpoint between the top-righ and bottom-right
|
||
|
(tlblX, tlblY) = midpoint(tl, bl)
|
||
|
(trbrX, trbrY) = midpoint(tr, br)
|
||
|
|
||
|
# draw the midpoints on the image
|
||
|
cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
|
||
|
cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
|
||
|
cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
|
||
|
cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
|
||
|
|
||
|
# draw lines between the midpoints
|
||
|
cv2.line(orig, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)),
|
||
|
(255, 0, 255), 2)
|
||
|
cv2.line(orig, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)),
|
||
|
(255, 0, 255), 2)
|
||
|
|
||
|
# compute the Euclidean distance between the midpoints
|
||
|
dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY))
|
||
|
dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY))
|
||
|
# if the pixels per metric has not been initialized, then
|
||
|
# compute it as the ratio of pixels to supplied metric
|
||
|
# (in this case, inches)
|
||
|
if pixelsPerMetric is None:
|
||
|
pixelsPerMetric = dB / args["width"]
|
||
|
print(f"dB: {dB}")
|
||
|
w_kg = args["width"]
|
||
|
print(f"width: {w_kg}")
|
||
|
print(f"pixelsPerMetric: {pixelsPerMetric}")
|
||
|
|
||
|
# compute the size of the object
|
||
|
dimA = dA / pixelsPerMetric
|
||
|
dimB = dB / pixelsPerMetric
|
||
|
# draw the object sizes on the image
|
||
|
cv2.putText(orig, "{:.2f} mm".format(dimA),
|
||
|
(int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX,
|
||
|
0.65, (255, 255, 255), 2)
|
||
|
cv2.putText(orig, "{:.2f} mm".format(dimB),
|
||
|
(int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
|
||
|
0.65, (255, 255, 255), 2)
|
||
|
# show the output image
|
||
|
cv2.imshow("Image", orig)
|
||
|
cv2.waitKey(0)
|